Developing high demand cognitive mathematics tasks with robotic simulators

Authors

DOI:

https://doi.org/10.61303/2735668X.v1i1.20

Keywords:

Mathematics education, Mathematical tasks, learning simulators, educational robotics

Abstract

It is considered that technologies enhance mathematical learning, but the constant updat- ing of technologies makes it difficult for teachers to update their knowledge. The group of Estudios Curriculares en Educación Mathematics (GECEM) linked to the Postgraduate Program in Teaching Science and Mathematics (PPGECIM), of the Lutheran University of Brazil (ULBRA), in Canoas, in the state of Rio Grande do Sul, Brazil, develops learning simulators to support teachers in their classroom practice with mathematical tasks with high cognitive demands. Robotic arm simulators are presented as learning objects with advantages over the real ones because they are less expensive, do not require mechanical adjustments, do not break, do not need to be transported, being great for classroom or online activities.

Downloads

Download data is not yet available.

References

Cyrino, M. C. de C. T., y Jesus, C. C. de (2014). Análise de tarefas matemá- ticas em uma proposta de formação continuada de professoras que ensinam matemática. Ciência & Educação (Bauru), 20(3), 751-764. https://doi. org/10.1590/1516-73132014000300015 DOI: https://doi.org/10.1590/1516-73132014000300015

D’Angelo, C., Rutstein, D., Harris, C., Bernard, R., Borokhovski, E., y Haertel, G. (2014). Simulations for STEM Learning : Systematic Review and Meta-Analysis. Melo Park, CA: SRI Education.

Demo, P. (2011). Olhar do educador e novas tecnologias. Senac: A R. Educ. Prof, 37(2), 15-26. Retrieved from http://pedrodemo.sites.uol.com.br

Flores, C. R., Wagner, D. R., y Buratto, I. C. F. (2012). Pesquisa em visualização na edu- cação matemática : conceitos, tendências e perspectivas. Educação Matemática Pesquisa, 14(1), 31-45.

Gutiérrez, Á. (1996). Visualization in 3-Dimensional Geometry: In Search of a Framework. In Proceedings of the 20th PME Conference (Vol. 1, 3-19). https:// doi.org/10.1017/CBO9781107415324.004

Homa, A. I. R. (2019a). Objetos De Aprendizaje Tridimensionales Construidos Con El Software Geogebra. Revista Paradigma, 40(1), 69-79.

Homa, A. I. R. (2019b). Robotics Simulators in STEM Education. Acta Scientiae, 21(5), 178-191. https://doi.org/10.17648/acta.scientiae.5417 DOI: https://doi.org/10.17648/acta.scientiae.5417

Lohman, D. F. (1996). Spatial Ability and g. In Human Abilities: Their Nature and Measurement (pp. 97-116). Lawrence Erlbaum Associates.

Mishra, P., y Koehler, M. J. (2006). Technological Pedagogical Content Knowledge: A Framework for Teacher Knowledge. Teachers College Record: The Voice of Scholarship in Education, 108(6), 1017-1054. https://doi. org/10.1177/016146810610800610 DOI: https://doi.org/10.1111/j.1467-9620.2006.00684.x

Moore, T. J., y Smith, K. A. (2014). Advancing the State of the Art of STEM Integration. Journal of STEM E Duc a Tion, 15(1), 5-11.

Niess, M. L., y Gillow-Wiles, H. (2017). Expanding teachers’ technological pedagogi- cal reasoning with a systems pedagogical approach. Australasian Journal of Educational Technology, 33(3), 77-95. https://doi.org/10.14742/ajet.3473 DOI: https://doi.org/10.14742/ajet.3473

Psotka, J. (2013). Educational Games and Virtual Reality as Disruptive Technologies. Educational Technology & Society, 16(2), 69-80.

Ronau, R. N., Rakes, C. R., y Niess, M. L. (2011). Educational technology, teacher knowledge, and classroom impact: A research handbook on frameworks and approaches. Educational Technology, Teacher Knowledge, and Classroom Impact: A Research Handbook on Frameworks and Approaches. https://doi. org/10.4018/978-1-60960-750-0 DOI: https://doi.org/10.4018/978-1-60960-750-0

Smith, M. S., y Stein, M. K. (1998). Selecting and creating mathematical tasks: From research to practice. Mathematics Teaching in the Middle School, 3(5), 344-350. DOI: https://doi.org/10.5951/MTMS.3.5.0344

Stein, M. K., y Smith, M. S. (1998). Mathematical Tasks as a Framework for Reflection: From Research to Practice. Mathematics Teaching in the Middle School, 3(4), 268-275. http://www.jstor.org/stable/41180401 DOI: https://doi.org/10.5951/MTMS.3.4.0268

Stein, M. K., Smith, M. S., Henningsen, M. A., y Silver, E. A. (2000). Implementing standarts based mathematics instruction: A casebook for professional develop- ment (D. F. Treagust, R. Duit, & B. J. Fraser, Eds.), Riskesdas 2018.

Stohlmann, M., Moore, T. J., y Roehrig, G. H. (2012). Considerations for Teaching Integrated STEM Education. Journal of Pre-College Engeneering Education Research, 2(1). https://doi.org/10.5703/1288284314653 DOI: https://doi.org/10.5703/1288284314653

Wu, Y., y Anderson, O. R. (2015). Technology-enhanced STEM (science, teechnology, engineering, and mathematics) education. Journal of Computers in Education, 2(3), 245-249. https://doi.org/10.1007/s40692-015-0041-2 DOI: https://doi.org/10.1007/s40692-015-0041-2

Published

2022-11-30

How to Cite

Homa, A. I. R. (2022). Developing high demand cognitive mathematics tasks with robotic simulators. Ducere. Revista De Investigación Educativa, 1(1), e202208. https://doi.org/10.61303/2735668X.v1i1.20

Issue

Section

Original Research Paper